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Abstract

We propose a one-equation model for two-dimensional turbulent flow through porous media. The momentum

equation is derived from the space averaging of Navier–Stokes equations, leading to the so-called Darcy–Forchheimer

equations. In the turbulent kinetic energy transport equation, the production term is assumed to be proportional to the

cube of velocity. The dissipation term is not estimated with a transport equation, it is explicitly given by a law involving

turbulent kinetic energy and velocity. The model requires only four experimentally determined parameters. The local

Nusselt number was correlated to local Reynolds number, and to local turbulence intensity. Good agreement between

the simulated and the experimental local Nusselt number is obtained.

� 2003 Elsevier Science Ltd. All rights reserved.

R�eesum�ee

Un mod�eele d��eecoulement turbulent �aa une �eequation a �eet�ee propos�ee pour simuler l��eecoulement bi-directionnel en milieu
poreux constitu�ee de sph�eeres. L��eequation de quantit�ee de mouvement -ou �eequation de Darcy–Forchheimer- est obtenue �aa
partir de la moyenne spatiale des �eequations de Navier–Stokes. Dans l��eequation de transport de l��eenergie cin�eetique
turbulente, le terme de production est suppos�ee proportionnel au cube de la vitesse. Le terme de dissipation de cette
�eequation n�est pas estim�ee par une �eequation de transport mais est donn�ee en fonction de la vitesse et de l��eenergie cin�eetique
turbulente. Le mod�eele ne comporte que quatre param�eetres qui sont d�eetermin�ees par voie exp�eerimentale. On �eetablit
ensuite une corr�eelation entre le nombre de Nusselt local, le nombre de Reynolds et le taux de turbulence. Un bon accord
est obtenu entre les r�eesultats exp�eerimentaux et les r�eesultats num�eeriques.
� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Forced convection cooling or heating of agricultural

products stacked inside a small container induces major

heterogeneities in their treatment. This is the case, for

instance, with fruits or vegetables stored in cold cham-

bers. Products located behind blind walls may not be

sufficiently cooled. This can lead to microbial prolifer-

ation and consequent rotting. Moreover, products ex-

posed to high air velocities may be subject to an

unwanted desiccation [1]. Poor temperature manage-

ment of a harvest can lead to its deterioration or even to

its complete loss.

The heterogeneity of treatment results from the

heating of the air as it passes trough the products and

from the variations in the heat transfer coefficient be-

tween the air and the surface of the products. The heat

transfer coefficient for a given product stack of identical

items (same shape and same average size) is a function of

airstream characteristics such as velocity and turbulence.

A few studies have been conducted on airflows

through stacked items. Beurkema and Bruin [2] and

Talbot et al. [3], using potatoes and oranges respectively,

established a numerical model to predict airflow and

heat transfer inside large containers of fruit and vege-

tables. Their approach assumes that the medium be-

haves like a porous medium and they use the Ergun

equation which relates the pressure drop to the super-

ficial velocity and involves coefficients based on the void

fraction /. In both studies, the predictions were verified
using product temperature measurements.

The above studies can predict the mean airflow but

do not take turbulence into account. However, free

stream turbulence is known to have a major influence on

transfer phenomena [4,5]. Comings et al. [5] have shown,

for instance, that the Nusselt number Nu increases by
25% when turbulence rises from 1% to 7%. Most studies

however, deal with turbulence around a single object

and only a few concern turbulence in stacked objects, for

instance in a tubular heat exchanger [6,7]. For bins filled

with spheres, Alvarez and Flick [8] have recorded ve-

locity maps that exhibited considerable heterogeneity.

They also shown that a strong turbulence intensity, up

to 50%, is generated by vortices in the wake of the

spheres. Some models have recently been developed to

take account of turbulence in porous media [9–11]. All

these models rely on a two-equation macroscopic tur-

bulence approach with a k–e closure (see also Section 2).
However, they require the determination of a set of

unknown constants and often involve costly computing.

This study establishes a model based on the mass,

momentum and turbulent kinetic energy transport

equations to describe turbulent flows in porous media. A

correlation is then established to estimate the heat

transfer coefficient as a function of mean velocity and tur-

bulence intensity Tu. A complete description of the

Nomenclature

a constant in Eq. (6)

b constant in Eq. (6)

c constant in Eq. (6)

C1 parameter of the model in Eq. (2) (m�2)

C2 parameter of the model in Eq. (2) (m�1)

C3 parameter of the model in Eq. (5) (m�1)

C4 parameter of the model in Eq. (5) (m�1)

h heat transfer coefficient at the interface air-

product (Wm�2 K�1)

hr equivalent heat transfer coefficient for ra-

diation (Wm�2 K�1)

k turbulent kinetic energy (m2 s�2)

Nu Nusselt number (hD=k)
p pressure (Pa)
Pr Prandtl number

Re modified Reynolds number qvD=lð1� /Þ
Tu turbulence intensity Tu ¼

ffiffiffiffiffi
2k

p
=v

u local instantaneous air velocity in the por-

ous medium (m s�1)

u time averaged local air velocity in the por-

ous medium (m s�1)

u0 fluctuation of instantaneous local air veloc-

ity (u� u) (m s�1)

hui space averaged instantaneous air velocity

(m s�1)

v superficial air velocity v ¼ hui ¼ hui (m s�1)

Greek symbols

a under-relaxation factor

ap thermal diffusivity of the product (m2 s�1)

e dissipation rate of the turbulent kinetic en-

ergy m2 s�3

k thermal conductivity of the air (Wm�1 K�1)

l dynamic viscosity of the air (kgm�1 s�1)

/ void fraction

Subscripts

est referred to estimated quantities

meas referred to measured quantities

t iteration index in the numerical procedure

x referred to x-direction
0 referred to value upstream of the porous

medium

1 referred to equilibrium value
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model is first given. This is followed by a description of

the experimental procedure used to determine the four

unknown constants required by the model. Finally, a

particular geometry: a ‘‘baffle arrangement’’, is investi-

gated.

2. Numerical modelling

It is known that high-velocity flows in porous media

lead to turbulence within the pores and that highly

chaotic structures develop when the pore-Reynolds

number (based on the pore size and velocity) becomes

Re > 300. Velocity measurements with a hot wire ane-

mometer confirm the existence of turbulence in packed

beds [8]. There are two main differences between flow

through porous media and turbulent free-stream flow:

the size of the eddies is limited by the pore size- and

additional drag (viscous and form) forces effects are in-

duced by the porous solid matrix.

This section presents the main steps taken to derive a

macroscopic k-model for incompressible turbulent flow
in porous media. The attention is drawn to the theo-

retical background and to the specificities of our ap-

proach.

2.1. Modelling background

The first step was to predict the pressure and velocity

within the porous medium. The approach most com-

monly used for laminar flows was first described by

Darcy, who postulated that the pressure drop within the

medium is due to viscous stress and is proportional to

the velocity. However Darcy�s law is not valid for high-

velocity flows and a correction term must be included to

take account of inertial effects. This term, is known as

the Forchheimer term and is a quadratic function of the

velocity. Ergun [12] established empirical expressions for

the constants appearing in the momentum equation,

involving the porosity of the medium, the viscosity and

the density of the fluid and mean equivalent diameter of

the product. He validated his expressions for the case of

stacked spheres.

Two approaches for defining turbulent kinetic energy

and for establishing turbulent kinetic energy transport

equation were found in the literature. The first was de-

veloped by Antohe and Lage [10], who spatially average

the Navier–Stokes equations and then derive the time

average of the obtained set of equations. They define the

turbulent kinetic energy as k0 ¼ 1
2
h~uui02. The transport

equation that they obtain indicates that for a one-

dimensional flow, k0 reduces to 0 when the flow is

established, which means that velocity fluctuations––

corresponding to ‘‘vortices’’ larger than the porosity

scale––decay and vanish. A second approach was de-

veloped by Nakayama and Kuwahara [11] who first time

average the Navier–Stokes equations leading to the

Reynolds equations. They then take the spatial average

of the obtained set of equations and establish an equa-

tion for the turbulent kinetic energy k and the dissipa-

tion rate e. Here k is defined as k ¼ 1
2

h~uu02i
/ . Given this

definition, they shown that k reaches a constant value k1
when a one-dimensional flow is established, which

means that on penetrating the porous medium, turbu-

lence inside the pores reaches a balance between pro-

duction and dissipation. The latter approach is used in

our study as it considers a kind of turbulence generated

by the porous medium. This type of turbulence is sus-

pected of having a strong influence on transfers between

the air and the products.

2.2. Governing equations

Our aim was to establish a simple model, valid for 2D

and 3D flows, that would gives a good approximation of

the turbulent kinetic energy and would predict the heat

transfer coefficient through stacked objects. The fol-

lowing model was derived from the approach developed

by Nakayama and Kuwahara [11]. Only one equation is

used for closure i.e. the dissipation rate appearing in the

turbulent kinetic energy transport equation is directly

expressed as a function of the turbulent kinetic energy

and of the velocity magnitude. For reasons of simplicity

and to reduce the number of parameters to be deter-

mined, we use a semi-empirical approach. The suggested

model can then be adapted to different shapes of prod-

ucts and various configurations of arrays.

2.2.1. Assumptions

It is assumed in this study that:

• The flow is incompressible.

• The flow is steady.

• The macroscopic inertial term (or macroflow devel-

opment term) as defined by Kaviany [13]: q
/ v 
 rv, is

negligible in the momentum equations. Indeed in

our case, the macroscopic kinetic energy: 1
2
qv2, is very

small compared to the pressure drop throughout the

porous media (the ratio is less than 1%).

• The microscopic inertial forces (microflow develop-

ment) are taken into account (Ergun term).

• The macroscopic or bulk viscous shear stress diffu-

sion term (or Brinkman term): l
/r2v, is negligible. In-

deed in our case, the Reynolds number (defined with

pore velocity and dimension) which compares viscous

forces and (microflow) inertial forces is high

ðRe > 104Þ.

Given these assumptions, the number of unknown

parameters is reduced to four.
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2.2.2. Macroscopic continuity, momentum and turbulent

kinetic energy equations

The following macroscopic equations are obtained

for turbulent flows. The velocity v that appears is both
temporally and spatially averaged: ~vv ¼ h~uui. Assuming
that the flow is steady, we also have h~uui ¼ h~uui.
1. The mass conservation equation is

~rr 
~vv ¼ 0 ð1Þ

2. The momentum conservation equation is derived

from Forchheimer-extended Darcy�s law:

� ~rrp ¼ C1l~vvþ C2qj~vvj~vv ð2Þ

The first term on the right-hand side (Darcy�s term)
accounts for the microscopic viscous drag while the

second term accounts for the form drag which is due to

inertial effects (direction changes) inside the pores and to

turbulent dissipation. For the particular case of stacked

spheres, Ergun [12] suggested the following expressions

for the constants C1 and C2:

C1 ¼ 150
ð1� /Þ2

/3D2

C2 ¼ 1:75
ð1� /Þ

/3D

where D is the equivalent diameter of the product and /
the void fraction. For the purpose of our study which

considers stacked spheres in alignment (whereas Ergun

studied randomly stacked spheres), C1 and C2 are esti-
mated experimentally.

3. Turbulent kinetic energy k: In view of the work of

Nakayama and Kuwahara [11], we define the turbulent

kinetic energy as: k ¼ 1
2

h~uu02i
/ . As they do, we neglect the

diffusion term and assume that the production term: Pk ,
is proportional to the cube of velocity. The latter term

can be interpreted as the transformation of part of the

kinetic energy of the mean flow into fluctuation energy

due to drag forces. For steady state flow:

~rr 
 k~vv ¼ Pk � � ð3Þ

with Pk ¼ C3j~vvj3.
Nakayama and Kuwahara [11] proposed C3 ¼

ð39ð1� /Þ5=2=DÞj~vvj3.
They also proposed a transport equation for the

dissipation rate of following kind:

~rr 
 �~vv ¼ C5j~vvj4 � C6
�2

k
ð4Þ

For one-directional fully developed flow (far enough

from inlet), Eqs. (3) and (4) lead to equilibrium between

production and dissipation: �1 ¼ Pk1 ¼ C3v3. Kinetic
turbulent energy reaches an equilibrium value propor-

tional to square of velocity: k1 ¼ C6C23
C6

v3. This means

that the turbulence intensity, defined as Tu ¼
ffiffiffiffi
2k

p

v , be-

comes independent of the velocity far from the inlet.

However the use of Eq. (4) would introduce two

more coefficients C5 and C6 which are difficult to iden-
tify. This is the reason why we propose a simplified

approach assuming that the dissipation of turbulent

kinetic energy follows a fist order law: � ¼ k
k1

�1 ¼
C5

C3C6
kv ¼ C4kv.
Eq. (3) becomes then:

~rr 
 k~vv ¼ C3j~vvj3 � C4kj~vvj ð5Þ

The last term of this equation is similar to the one

suggested by Green [9,14] in order to take into account

supplementary dissipation generated by obstacles in

turbulent flow and it is consistent with that derived by

Wilson [15] in case of isotropic turbulence. For flow

through vegetation, Green considered additionally that

C2 ¼ C3 and C4 ¼ 4C2.

In conclusion we use only one equation involving two

parameters to predict turbulence intensity. In our case

the characteristic length scale of turbulence in the po-

rous medium is closely linked to the size of the pores and

particles. This justifies partially that we do not use a

second equation (transport of �) which can be viewed as
the transport of the length scale of the eddies.

4. Heat transfer correlation: The heat transfer coef-

ficient is assumed to depend on the velocity and the

turbulence intensity, according to the law:

Nu ¼ aRebPr1=3ð1þ cTuÞ ð6Þ

Here Nu ¼ hD
k is the Nusselt number, where k is the air

conductivity and h is the heat transfer coefficient (mean
value for the surface of one sphere). Re ¼ qvD=lð1� /Þ
is the modified Reynolds number which takes account of

the mean interstitial velocity and the mean hydraulic

pore diameter. Exponent b of the Reynolds number re-
mains to be determined. Pr is the Prandtl number. Its
exponent 1/3 was obtained for isolated objects and its

value for an air flow is 0.71.

The influence of local turbulence intensity is taken

into account by the term ð1þ cTuÞ, where c is a con-
stant. In the case of stacked objects, the heat transfer

coefficient (Nusselt number) is often related to velocity

(Reynolds number) and row position (n). Here, we
propose to take row position into account indirectly by

the local turbulence intensity which increases row after

row.

In the literature, for single object, heat transfer en-

hancement due to turbulence is taken into account by

several correlation involving the turbulence intensity:

Tu ¼
ffiffiffiffi
2k

p

v [4], or its product with Reynolds number:

Tu 
 Re [16], or Tu
ffiffiffiffiffiffi
Re

p
([17,18]).

On the one hand, for our turbulence model and for

one-directional flow, turbulence intensity depends on

row position but not on velocity (Reynolds number). On
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the other hand, we observed experimentally that the

ratio of the heat transfer coefficients between the first

row and an other row is almost independent of the air

velocity.

Thus we have chosen to express heat transfer en-

hancement simply by a linear function of the turbulence

intensity.

2.2.3. Boundary conditions

When the pressure at the inlet and outlet is known, it

is directly imposed in the programme. However, often,

only the flow rate is known and the pressure drop be-

tween the inlet and the outlet must be adjusted so as to

give the expected flow rate. The turbulent kinetic energy

k at the inlet is imposed. It is generally very weak

compared to the velocity fluctuations generated by the

obstacles.

At walls, the normal pressure gradient and velocity

are equal to zero (no exchange of mass between the

porous medium and the surrounding medium).

2.3. Numerical procedure

The unknown variables are the pressure p, the ve-
locity field~vv and the turbulent kinetic energy k.

The governing equations are discretized using the fi-

nite volume method. They are then solved by reducing

the system to successive linear tridiagonal systems. The

program was written in Fortran. All calculations were

performed using a Sun UltraSparc 60.

In the first stage, Eqs. (1) and (2) are combined giv-

ing:

~rr 

~rrp

C1l þ C2qj~vvj

 !
¼ 0 ð7Þ

This equation is then solved according to an iterative

procedure: from an estimated velocity field at iteration

t � 1, it is possible to calculate a new pressure field at

iteration t:

~rr 

~rrpt

C1l þ C2qj~vvt�1j

 !
¼ 0 ð8Þ

A new velocity field is then deduced from Eq. (2):

vt
!¼

~rrpt
C1l þ C2qj~vvt�1j

ð9Þ

To improve the convergence process, an under-relax-

ation is applied at each iteration. We thus obtain the

velocity vt
! at iteration t:

vt
!¼ a

~rrpt
C1l þ C2qj~vvt�1j

þ ð1� aÞ~vvt�1 ð10Þ

where a is the under-relaxation factor a 2 ½0; 1�. For
practical reasons, we took a ¼ 0:2.

The mass and momentum equations are discretized

according to an implicit centred scheme. The equation

for the transport of k (Eq. (5)), however, is discretized
according to an upwind scheme as diffusion is neglected.

In order to avoid incorrect zigzag pressure field [19], we

use a staggered grid: scalar quantities are estimated at

the centre of cells and velocity components at the centre

of cell faces. The corresponding algorithm is shown in

Fig. 1.

3. Description of the experimental device

Experimental determination of the unknown model

constants, C1, C2, C3 and C4, requires detailed mea-

surements of velocity and turbulence in a porous me-

dium.

3.1. Experimental material

The experimental setup is an air-blast tunnel con-

sisting of a rectangular section followed by a converging

channel connected to an air extraction duct. The airflow

temperature could be kept constant automatically and

was maintained at 293 K during our experiments. The

air velocity may vary from 0 to �2.7 m s� 1.

The porous medium consists of 75 mm diameter PVC

spheres. The corresponding facility is shown in Fig. 2.

The device consisted of a plane of spheres with 5 rows in

the y-direction (perpendicular to the main flow) and n
rows in the x-direction (corresponding to the direction of
the main flow). The number of rows in the x-direction, n,
could vary between 1 and 5. The spheres were in contact

with one another in both the x and y directions. Half

Fig. 1. Algorithm of the one-equation model for flows in po-

rous media.
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spheres were stuck to plexiglass sheets above and below

this plane and the lateral plexiglass walls, in contact with

the complete spheres. Such a configuration, (corre-

sponding to a rectangular stack) is not very far from an

infinite medium (for which there would be no plexiglass

boundary), as the shear surface between the air and the

lateral walls is minimized.

For stacked 75 mm diameter spheres arranged in

rectangular parallelepipeds, the theoretical height of the

porous medium is 106 mm and the corresponding void

fraction is thus / ¼ 0:26. The observed height is how-
ever, 120 mm due to the fact that there was not always

perfect contact between adjacent spheres. We therefore

considered that the experimental porosity of the device

was / ¼ 0:34.

3.2. Measurements

The pressure drop was measured with to a tilted-tube

pressure gauge, for different flow rates, and for different

numbers of rows of spheres. The flow rate was measured

with an Annubar sensor located in the extraction duct.

Instantaneous velocity was measured upstream and

100 mm downstream of the porous medium in the

x-direction, using a laser anemometer. For most of

measurements, water droplets of 2� 10�6 m mean dia-

meter obtained with an ultrasonic spray device were

used for seeding. For some experiments incense smoke

which contains much smaller particles was also used.

Similar results were obtained for mean and RMS of

velocity.

Fig. 2. Device used for experiments.
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As the spheres were arranged symmetrically, we used

a measurement grid of 4*13 points located on only a

quarter of the section (see Fig. 3).

Local heat transfer coefficient was measured using

the stationary method [20,21] for several upstream air

velocities: from 0.95 to 2.7 m s� 1. A full description of

this method may be found in [22]. It consists of mea-

suring the temperature difference between aluminium

spheres heated by Joule effect and the ambient air up-

stream of each sphere. Indeed each aluminium sphere

was equipped with an electrical heater placed at their

centre, allowing a constant flux (1415 Wm�2) to be de-

livered. A Copper–Constantan thermocouple was in-

serted in the sphere (see Fig. 2).

Both air and sphere temperature measurements were

performed using calibrated Copper–Constantan thermo-

couples. In the case of aluminium spheres, the Biot

number hD
kalu

is under 0.1 (h < 200 Wm�2 K�1, D ¼ 0:075

m, kalu > 200 Wm�1 K�1), so the temperature of the

sphere can be considered as uniform.

The heat flux leaves the sphere primarily by convec-

tion. Conduction between spheres could be neglected as

the metallic probes were only in contact with plastic

spheres and the area in contact with each probe was

negligible (see Fig. 2). As far as radiation is concerned,

the measured heat transfer coefficient, h, could be

compared with an equivalent radiation heat transfer

coefficient hr ¼ 4esT 3. The h values ranged from 50 to

150 Wm�2 K�1, with a maximum hr value of about 1.4
Wm�2 K�1 (the maximum sphere temperature was

T ¼ 40 �C, e: emissivity of polished aluminium �0.2,
Stefan–Boltzmann constant s ¼ 5:67� 10�8 Wm�2

K�4). In the worst case, i.e. when heat transfer coefficient

is around 50 Wm�2 K�1, the maximum error due to

radiation was about 2.8%. Overall, with errors in mea-

suring temperature (�0.1 �C), electrical resistance mea-
surements (�1 X) and voltage measurements (�0.015
V), the error calculated for the convection heat transfer

coefficient was about 4%.

3.3. Determination of the model constants

3.3.1. Constants C1 and C2 of the momentum equation

(Darcy–Forchheimer)

To identify constants C1 and C2 of Eq. (2), we con-

sidered a one-dimensional flow. Our experiments

showed that for a flow velocity of the order of 1 m s� 1,

the linear term of Eq. (2) is negligible compared to the

quadratic term. The pressure drop is therefore propor-

tional to the squared velocity and we set C1 ¼ 0 m�2. C2
was then determined through a linear fit from mea-

surements of pressure drops with 1–5 rows and 2 m s� 1

velocity (Fig. 4). The experimental results disclosed a

linear behaviour, from which the slope was identified as

the C2 coefficient, with a value of C2 ¼ 321 m�1. Using

Ergun�s law, we obtained a slightly higher value: C2 ¼
392 m�1. The difference may be due to the fact that if the

spheres are precisely arranged, the flow tends to follow

preferential paths, thus reducing any loss of kinetic en-

ergy due to flow deflections.

3.3.2. Parameters C3 and C4 of the turbulent kinetic

energy equation

For a one-dimensional flow, velocity is constant and

the turbulent kinetic energy follows a decaying expo-

nential law, from the initial value k0 to the equilibrium
value k1:

k � k1
k0 � k1

¼ e�C4x ð11Þ

where k0 is the turbulent kinetic energy upstream, k1 is

obtained from Eq. (5), equalizing the right-hand term to

0:

Fig. 3. Location of the velocity measurement points.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
20

40

60

80

100

120

140

∆ p
/(

ρv
2 )

L(m)

Fig. 4. Pressure drop as a function of the length of the porous

medium: experimental results (stars) and linear fit (continuous

line).
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k1 ¼ C3
C4

v2 ð12Þ

For practical reasons, the turbulence could not be

measured inside the porous medium but only down-

stream in flow direction x. From the observations of

turbulence decay behind a grid, we assume that the

relative decrease of turbulent kinetic energy is a function

only of the distance between the outlet of the porous

medium and the measurement section. Moreover, as the

measurement section was far from the wake or recircu-

lation zones, the turbulence can be considered to be

isotropic and therefore proportional to the turbulence

measured in the x-direction. Turbulence intensity was
defined as Tu ¼

ffiffiffiffiffi
2k

p
=v and a bulk average over the

measurement section was taken in order to obtain a

mean value of the measured turbulence intensity in the

x-direction:

Tux;meas ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
S u

02
x;measux;meas dS

ux;meas2
R
S ux;meas dS

s
ð13Þ

where ux;meas is the local velocity in the x-direction and
u0x;meas is the velocity fluctuation around the time average
value ux;meas. We could then write:

Tu2x;meas � Tu2x;meas1
Tu2x;meas0 � Tu2x;meas1

¼ Tu2 � Tu21
Tu20 � Tu21

¼ k � k1
k0 � k1

¼ e�C4x

ð14Þ

The upstream turbulence intensity Tu2x;meas0 was mea-
sured and a value of 0.13 was found. The turbulence

intensity was also measured downstream for 1, 2 and 3

rows of spheres. Results are reported in Fig. 5. The

corresponding nonlinear fit obtained by the Hooke

method is also drawn. Values of 0.75 and 21 m�1 were

found for the asymptote Tu2x;meas1 and for the coefficient

C4 respectively. From the value of C4, we deduced that
the characteristic depth necessary to reach equilibrium

between production and dissipation is 1=21 ¼ 0:048 m.
Coefficient C3 was then found from the expression

suggested by Green [9,14]: C3 ¼ C2, who assumes that all

mechanical energy lost by the mean flow is converted

into turbulent kinetic energy before its dissipates as heat.

Hence:

C3 ¼ 321 m�1

3.3.3. Heat transfer

Exponent b of Reynolds number Re (Eq. (6)) is esti-
mated from the average value of the heat transfer co-

efficient over the rows and for different flow rates:

Nu
row ¼ aRebPr1=3ð1þ cTu

rowÞ ¼ a0Reb ð15Þ

where the superscript
row
stems for the average over the

rows. A linear fit on the logarithm of expression (15)

then gives b ¼ 0:67.
In the second stage (once b is known), we make a

linear fit of Nu=ðRebPr1=3Þ as a function of the turbulence
measured upstream of the row. Eq. (14) can be written

as

Tu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tu21 � ðTu21 � Tu20Þe�C4ðp�1ÞDx

q
ð16Þ

where p is the row index and Dx is the distance between
adjacent rows. From Eq. (12) we get

Tu1 ¼
ffiffiffiffiffi
2k

p

v
¼

ffiffiffiffiffiffiffiffi
2C3
C4

s
¼ 5:53 ð17Þ

Coefficients a and c are then determined. The linear fit
obtained from the experimental data gives: a ¼ 0:421
and c ¼ 0:059.
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Fig. 5. Turbulence intensity as a function of the length of the

porous medium: experimental results (stars) and nonlinear fit

(continuous line).
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Fig. 6. Nusselt number estimated by the model as a function of

the measured Nusselt number.
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Results obtained from expression (6) (Nuest) and from
experiments (Numeas) are plotted in Fig. 6. The �5%
deviations from the bisector are also plotted, with da-

shed lines. Good agreement is obtained showing that the

correlation between heat transfer and velocity/turbu-

lence is relevant.

4. Validation of two-dimensional flow

In order to assess the ability of the model to describe

airflow through porous media, we then considered a

two-dimensional geometry.

4.1. Experimental setup and results

The geometry considered is shown in Fig. 2 except

that two baffles covered with half spheres were added

(see Fig. 7). The flow path looks like an S-shape. The

heating spheres used to estimate the heat transfer coef-

ficient are mainly located near the inlet, on the diagonal

and near the outlet. They are numbered from 1 to 9.

4.2. Simulations

Results are shown in Fig. 8. The pressure drop

between the inlet and the outlet was adjusted so as

to obtain the correct measured superficial velocity

9

X

Y

Top view

1

2

3

4

5

6

7

8

Fig. 7. Flow path with two baffles.

Fig. 8. Pressure, turbulence intensity, superficial velocity magnitude field and vectors in the baffle (continuous lines correspond to iso-

value contours).
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v ¼ 2:3 m s�1. The pressure field obviously shows a de-
crease between the inlet and the outlet. As macroscopic

inertial terms are neglected, the velocity field is sym-

metrical. The baffle is responsible for an overspeed of

airflow in both the inlet and outlet areas. Turbulence

was very low at the inlet as quiet ambient air was in-

troduced into the porous medium. However, turbulent

kinetic energy was generated as the flow passes through

the porous medium, reaching high values in the outlet

section. The velocity fluctuations were then of the same

order as the mean interstitial velocity v=/.
Fig. 9 gives a representation of the porous medium

and shows the heat transfer coefficient for each heating

sphere h estimated from the model (Eq. (15)) (upper

value) and measured with the stationary method (lower

value). The measured value of h is higher near the outlet
(sphere 9) than near the inlet (sphere 2), in agreement

with the model, which takes turbulence generation and

transport of into account. The difference in this par-

ticular case is due only to turbulence as the velocity

remains the same between the inlet and the outlet. In

addition, both the model and the experiment show that

hðsphere 3Þ > hðsphere 2Þ. The increase of h results

from a higher velocity value at the edge of the inlet

section (sphere 3) than in the middle of the inlet (sphere

2). As far as the diagonal is concerned, hðsphere 6Þ >
hðspheres 5=7Þ > hðspheres 4=8Þ. Here again, the veloc-
ity field (see Fig. 8) gives the explanation: along the

diagonal, the velocity reaches its maximum in the middle

of the square and decreases towards the corners. Dif-

ferences between the measurements and the model oc-

cur on the diagonal, however, as hmeasuredðsphere 8Þ >
hmeasuredðspheres 4Þ and hmeasuredðsphere 7Þ > hmeasured�
ðspheres 5Þ, whereas these trends are reversed for the

model. The differences probably result from the fact that

the model ignores the inertial terms in the momentum

equations (see Eq. (2)). Nevertheless, the average relative

variation defined as 1=9
P9

1
jhmeasured�hestimated j

hmeasured
is only 5.6%,

and predictions from the model can thus be considered

as reliable.

5. Conclusion

This article proposes a semi-empirical model to pre-

dict the flow field in a porous medium. Calculation of

the pressure and velocity fields is based on the Darcy–

Forchheimer equation. The turbulent kinetic energy is

obtained from a transport equation involving specific

source and sink terms for the porous medium. The

model has four coefficients, which were identified

through wind tunnel experiments using stacked spheres

as a porous medium for a one-directional flow.

Heat transfer between the spheres and the air is de-

scribed by a correlation that links the local Nusselt

number to the modified Reynolds number and to tur-

bulence intensity. The three parameters of this thermal

model were then identified from the experimental data.

The main interest of this model is that it links the heat

transfer coefficient to local turbulence. The approach

can thus be used for two- or three-dimensional flows.

The model was tested using the identified parameters

for two-dimensional flow configuration. Most charac-

teristics of the measured heat transfer coefficients were

reproduced and estimated with a relative accuracy of the

order of 6%.
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